Adiabatic quantum programming: minor embedding with hard faults

نویسندگان

  • Christine Klymko
  • Blair D. Sullivan
  • Travis S. Humble
چکیده

Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Thesemethods extendwith fabric growthwhile scaling linearly in time and quadratically in footprint.We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minor-embedding in adiabatic quantum computation: I. The parameter setting problem

We show that the NP-hard quadratic unconstrained binary optimization (QUBO) problem on a graph G can be solved using an adiabatic quantum computer that implements an Ising spin-1/2 Hamiltonian, by reduction through minor-embedding of G in the quantum hardware graph U . There are two components to this reduction: embedding and parameter setting. The embedding problem is to find a minor-embedding...

متن کامل

Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design

In [6], we introduced the notion of minor-embedding in adiabatic quantum optimization. A minor-embedding of a graph G in a quantum hardware graph U is a subgraph of U such that G can be obtained from it by contracting edges. In this paper, we describe the intertwined adiabatic quantum architecture design problem, which is to construct a hardware graph U that satisfies all known physical constra...

متن کامل

Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage

We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...

متن کامل

Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization

Many artificial intelligence (AI) problems naturally map to NP-hard optimization problems. This has the interesting consequence that enabling human-level capability in machines often requires systems that can handle formally intractable problems. This issue can sometimes (but possibly not always) be resolved by building special-purpose heuristic algorithms, tailored to the problem in question. ...

متن کامل

Scalable Architecture for Adiabatic Quantum Computing of Np-hard Problems

We present a comprehensive review of past research into adiabatic quantum computation and then propose a scalable architecture for an adiabatic quantum computer that can treat NP-hard problems without requiring local coherent operations. Instead, computation can be performed entirely by adiabatically varying a magnetic field applied to all the qubits simultaneously. Local (incoherent) operation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Quantum Information Processing

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014